Lazy vs. Eager Learning

- **Lazy vs. eager learning**
 - Lazy learning (e.g., instance-based learning): Simply stores training data (or only minor processing) and waits until it is given a test tuple
 - Eager learning (e.g. Decision trees, SVM, NN): Given a set of training set, constructs a classification model before receiving new (e.g., test) data to classify

- Lazy: less time in training but more time in predicting

- **Accuracy**
 - Lazy method effectively uses a richer hypothesis space since it uses many local linear functions to form its implicit global approximation to the target function
 - Eager: must commit to a single hypothesis that covers the entire instance space
Lazy Learner: Instance-Based Methods

• Instance-based learning:
 – Store training examples and delay the processing ("lazy evaluation") until a new instance must be classified

• Typical approaches
 – k-nearest neighbor approach
 • Instances represented as points in a Euclidean space.
 – Locally weighted regression
 • Constructs local approximation
The k-Nearest Neighbor Algorithm

- All instances correspond to points in the n-D space
- The nearest neighbor are defined in terms of Euclidean distance, $\text{dist}(X_1, X_2)$
- Target function could be discrete- or real- value
For discrete-valued, k-NN returns the most common value among the k training examples nearest to x_q
Vonoroi diagram: the decision surface induced by 1-NN for a typical set of training examples
Discussion on the k-NN Algorithm

• k-NN for real-valued prediction for a given unknown tuple
 – Returns the mean values of the k nearest neighbors

• Distance-weighted nearest neighbor algorithm
 – Weight the contribution of each of the k neighbors according to their distance to the query x_q
 • Give greater weight to closer neighbors

• Robust to noisy data by averaging k-nearest neighbors

• Curse of dimensionality: distance between neighbors could be dominated by irrelevant attributes
Case-Based Reasoning (CBR)

- CBR: Uses a database of problem solutions to solve new problems
- Store symbolic description (tuples or cases)—not points in a Euclidean space
- Applications: Customer-service (product-related diagnosis), legal ruling
- Methodology
 - Instances represented by rich symbolic descriptions (e.g., function graphs)
 - Search for similar cases, multiple retrieved cases may be combined
 - Tight coupling between case retrieval, knowledge-based reasoning, and problem solving
- Challenges
 - Find a good similarity metric
 - Indexing based on syntactic similarity measure, and when failure, backtracking, and adapting to additional cases